

Cambridge IGCSE™

MATHEMATICS**0580/22**

Paper 2 (Extended)

October/November 2024

MARK SCHEME

Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of 7 printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

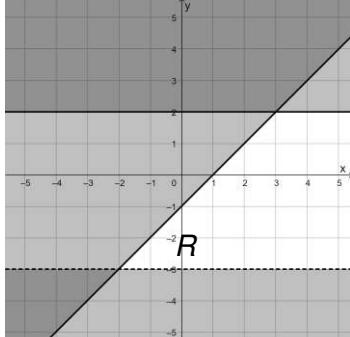
Abbreviations

cao – correct answer only

dep – dependent

FT – follow through after error

isw – ignore subsequent working


oe – or equivalent

SC – Special Case

nfw – not from wrong working

soi – seen or implied

Question	Answer	Marks	Partial Marks
1	$[c =] 3$ $[k =] -39$	2	B1 for each or SC1 for $c = -39$ and $k = 3$
2	94	2	M1 for $x + 2 \times 43 = 180$ oe
3	24 $\sqrt{3}$ 0.25	3	B1 for each
4(a)	76	1	
4(b)	Point correctly plotted at (42, 33)	1	
4(c)(i)	Correct ruled line of best fit	1	
4(c)(ii)	An integer in the range 27 to 33	1	FT <i>their</i> line of best fit provided line shows positive correlation and answer is an integer
4(d)	Positive	1	
5	75 100	1	
6	4.5 oe	2	M1 for $\frac{1}{2} \times 6 \times (x + 9.5) = 42$ oe or $42 \times \frac{2}{6} - 9.5$ oe
7	$\frac{2}{7} \times \frac{11}{6}$ or $\frac{22}{77} \div \frac{42}{77}$ oe with common denominator	M1	
	$\frac{11}{21}$ cao	A1	
8	70	4	B3 for $x = 11$ OR M1 for $132 - 2x + 15 + 5x = 180$ oe M1 for collecting x terms on one side and number terms on the other for <i>their</i> equation. M1 for $15 + 5 \times \text{their } x$ oe where $-3 < \text{their } x < 15$ or for $132 - 2 \times \text{their } x$ oe where $21 < \text{their } x < 66$

Question	Answer	Marks	Partial Marks
9	36π cao	3	<p>B2 for answer 113 or 113.0 to 113.1... or an answer in terms of π which rounds to 113</p> <p>or M1 for correct first step for finding d or r e.g. $72 + 72 = d^2$ oe</p> $72 = r^2 + r^2 \text{ oe or } \left(\frac{\sqrt{72}}{2}\right)^2 + \left(\frac{\sqrt{72}}{2}\right)^2 = r^2 \text{ oe}$ $\sqrt{72} = \frac{r}{\sin 45} \text{ oe}$ $\frac{1}{2} \times r \times r = \frac{72}{4} \text{ oe}$
10	1.4 oe	1	
11(a)	$3x(8x - 3y)$ final answer	2	<p>B1 for $3(8x^2 - 3xy)$ or $x(24x - 9y)$ or $3x(8x - 3y)$ seen then spoilt</p>
11(b)	$7(3x + 2y)(3x - 2y)$ final answer	3	<p>B2 for $(21x + 14y)(3x - 2y)$ or $(3x + 2y)(21x - 14y)$ or $7(3x + 2y)(3x - 2y)$ seen then spoilt</p> <p>or M1 for $7(9x^2 - 4y^2)$ or [...] $(3x + 2y)(3x - 2y)$</p>
12	5.6 oe	3	<p>M1 for $y = k\sqrt{x+1}$ oe</p> <p>M1 for $y = \text{their } k\sqrt{1.56+1}$ oe</p>
13		4	<p>B1 for $y = 2$ solid line B1 for $y = x - 1$ solid line B1 for $y = -3$ dashed line</p> <p>B1 for correct region identified satisfying the given inequalities</p>
14(a)	2	1	
14(b)	240	3	<p>M2 for correct complete area statement e.g. $\frac{1}{2} \times 20 \times 10 + 7 \times 20$ oe</p> <p>or M1 for one correct area</p>

Question	Answer	Marks	Partial Marks
15	60835	2	M1 for $40000 \times \left(1 + \frac{15}{100}\right)^3$ oe
16	$\frac{17}{20}$ oe	1	
17	52	2	M1 for $360 - 90 - 90 - 128$ oe or B1 for [obtuse angle] $AOC = 128$ or AOD or $COD = 64$ or DAO or $DCO = 90$
18(a)		3	B2 for three correctly placed or B1 for two correctly placed or correct conversion of 8×10^{-1} , 8% and $\sqrt{0.08}$ to 0.8, 0.08, 0.2[8...] or 0.3
18(b)		1	
19(a)	858 or 857.7 to 857.9	3	M2 for $\left[\frac{1}{2} \times \frac{4}{3}\right] \times \pi \times 4.3^3 + \pi \times 4.3^2 \times 11.9$ oe or M1 for $\left[\frac{1}{2} \times \frac{4}{3}\right] \times \pi \times 4.3^3$ or $\pi \times 4.3^2 \times 11.9$
19(b)	496 or 495.7 to 495.8...	4	M3 for $\frac{1}{2} \times 4 \times \pi \times 4.3^2 + \pi \times 4.3^2 + 2 \times \pi \times 4.3 \times 11.9$ oe OR M1 for $\pi \times 4.3^2 \times k$ where k is a whole number M1 for $2 \times \pi \times 4.3 \times 11.9$
20	7^{n-2} oe final answer	2	M1 for recognition of terms being powers of 7

Question	Answer	Marks	Partial Marks
21	$2x^3 + 17x^2 + 38x + 15$ final answer	3	<p>B2 for correct expansion of the three brackets unsimplified</p> <p>or</p> <p>for simplified four-term expression of correct form with three terms correct</p> <p>or B1 for correct expansion of two of the given brackets with at least three terms out of four correct</p>
22	$[y =] -\frac{1}{5}x + 28$ final answer	5	<p>B1 for midpoint (20, 24) soi</p> <p>M1 for [gradient =] $\frac{39-9}{23-17}$ oe</p> <p>M1 for $\frac{-1}{\text{their gradient}}$</p> <p>M1 for substitution of <i>their</i> midpoint into <i>their</i> $y = mx + c$ oe</p>
23	4.2 oe	3	<p>M2 for $\sqrt[3]{1 + \frac{72.8}{100}} \times 3.5$ oe</p> <p>or M1 for $\frac{\sqrt[3]{172.8}}{\sqrt[3]{100}}$ oe</p> <p>or $\frac{\sqrt[3]{100}}{\sqrt[3]{172.8}}$ oe</p> <p>or $\frac{x^3}{3.5^3} = \frac{172.8}{100}$ oe</p>